
Journal of Engineering Physics and Thermophysics, Vol. 73, No. 2, 2000 

EQUATION FOR STOCHASTIC THERMAL FIELDS 

I. A. Solov'ev UDC 536.2 (075) 

Front phenomenological laws in the difference representation .for the mean vahws and opt the assump- 

tion that the therntal.field is Markovian we obtained a partial differential equation with account for the 

.field stochastici~. Integral mean values of  the thermal .field are shown to obey the well-known heat 
conduction equation. 

Introduction. As is well known [11, stochastic fields ~ that in the space q = (qb q2, q3) E D c R 3 and 
time t ~ [0, co] assume T values can be described theoretically via a probability density functional P(T) that 
obeys the Kolmogorov-Fokker-Plank equation in partial functional derivatives. Because of certain difficulties 
that were discussed in [1] this equation is practically not used for calculations in solving applied problems. 

Apart from the Kolmogorov method, stochasticity can be taken into account 1) with the aid of Ito or 
Stratonovich stochastic integrals [2], 2) by deriving an equation |or a nonequilibrium distribution function from 
the Liouville equation [3], and 3) with the aid of equations tbr probability waves 14-9]. 

In addition to these methods, for describing stochastic fields an approach seems promising that is based 
on simultaneous analysis of local relations for the mean values of the thermal field that conform to the Fourier 
law and the continuity equation, and of expressions for the mean temperatures obtained from an explicit differ- 
ence scheme of the Kolmogorov-Fokker-Planck equation tbr a stochastic process at each space point. The 
present paper aims at implementing this approach in constructing the tbllowing problem: to find the probability 
density function lor a stochastic themlal field as a solution of a partial differential equation on condition that 
the values of this function are known at the initial instant of time and at the boundary FA(q) ~ R 3. 

1. Probability Density Function for a Scalar  Stochastic Field. For the subsequent presentation we 
agree upon the lbllowing notation. We consider the measurable probability space {f2, A, P} mapped into the 
measurable space (T, IB), where A and 13 are Boolean algebras, f2 is the space of elementary events to ~ EL P 
is the probability, T ~ T c R I is the set of values of  a certain scalar stochastic field ~(to, q, t) in the space 

= (ql, q2, q3) E A(q) < R 3 and time t ~ [0, to], and A(q) ~ R 3 is a closed space region with the boundary 
FA(q) ~ R 3. 

Definition 1. The integral probability function for the stochastic field ~(to, q, t) is the probability that 
the stochastic field at any point q ~ A E R 3 at any instant of time t > 0 assumes a value that is smaller than 
T: 

t (l) 

With account for the probabilistic meaning of the function qb¢(~, t, T), it has the tbllowing properties: 

1) ~ (q, t, T) - is nondecreasing in the argument T : 

qb~(~,t, T l ) < ~ ( q , t ,  T2) for T 1 < ~ ,  v ~  A ,  v t ~  [0, oo); (2) 
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2) lim ~g(q , t ,  7 3 = l ,  v q e  A,  v t e  [0, oo); (3) 
T--~_+~ 

C 2 3) ~e, (q, t, T) e (q e A, t ~ I0, oo), 73. 

Definition 2. The function Fig(q, t; T) that is defined by the equation 

0¢,e, (?/, t: 73 
Fig (q, t; T) - OT ' 

(4) 

(5) 

is called the probability density function tbr the stochastic field ~(0~, q, t). 
From Definitions 1 and 2 it follows that Fig(y, t; T) is nonnegative and depends on both the space-time 

coordinates (q, t) and the mappings of T of the stochastic field, with T entering into He,(q, t; T) as an inde- 
pendent argument of q and t. 

Hereafter we will assume that the stochastic fields considered are generalized Markovian fields 12], and 
the probability density function He,(q, t; T) is twice continuously differentiable with respect to qi(i = 1,3) and 
T and once continuously differentiable with respect to the time t. 

Definition 3. The mean value of the stochastic field ~(m, q, t) (or the moment of the first order) is the 
quantity 

(~ (q, t )V = f T He, (q, t; 7") dT.  
(6) 

2. Derivation of an Equation for the Probability Density Function of a Stochastic Thermal Field. 
Let us introduce the set of discrete and continuous independent variables OA = {qi = ih, i = O, N; tj = .]~c, j = 
0, J , - o o < T < o o }  and select the pattern (qi+J, (i; T), (qi, ti; T), (q i - l ,  ti; T) ,  and (qi, (/+l; T). 

An analysis of deriving heat conduction equations [101 permits one to draw the following conclusion. 
The mean temperatures inside each cell of the grid can be calculated as follows. For all nodes on the j-th time 
layer, except for the node (qi, (i; T), the mean temperature is the result of multiplication of T by the conditional 

probability, each of which is the product of the probability lqe,(qi+l, tj; T )dT  of the state of the system at a 

given point qi and a given time tj with a given temperature T by the probability p = a x / h  2 of a change in this 

state over the time "c by spatial heat transfer from the central node over the distance h by the heat transfer 
laws. For the central node (qi, {i; T), the mean temperature is obtained by multiplying T by a quantity that is 
the difference between unity and the conditional probabilities of the outflow from this node into two neighbor- 
ing ones. Obviously, this difference should be positive. The requirement of positiveness of the above difference 
coincides with the condition of stability for the explicit  difference-differential scheme considered below: 

TFl~(qi, tj; T)dT{ 1 - 2a -~} .  

At each space node, the Markovian field transforms into a Markovian process that conforms to the 
Kolmogorov-Fokker-Planck equation, which we represent in the difference-differential tbrm 

Ile, (qi, tj+l; 73 = FIe (qi, tj; T) - 

0 

- ~ - -  (qi, T)} + B (qi, tj; T) Fie, (qi, !i; 7 ) ] .  
aT 
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Hence, because the process at the node (qi, tj+l; 7") is Markovian, we obtain the tbllowing relation for the local 
mean temperatures: 

T l]g (qi, %1; T) d T =  T FI~ (qi, (j; T) dT - 

As a result of simultaneous analysis of phenomenoiogical relations and relations following from the assumption 
that the thermal field is Markovian, we obtain the tbllowing expression for the mean value of the thermal field 
at the node (qi, tj+l; 7"): 

T H i (qi, ti+l; T) dT = T FI~ (qi, ti; 7) dT { 1 - 2a T___" h 2 + 

+ T ~ Fig (qi+" tj; T) a'c 

- TI-~T {f(qi,',; T) lqg (qi, t/; T) dT+ 

0 2 
+ T'C - ~  {B (qi, {J: T) FI t (qi, ti: 7")} dT.  (7) 

Suppose we know a priori the initial distributions of the probability density functions of  temperature 

Fig (qi, (j = t0 = O; T) = cI) (qi, T),  i s 10, I1, T ~ (-  oo, oo) (8) 

and the behavior of the probability density function at boundary nodes of the grid 

Fig (qo, tj; T) = f2 (tj, T), Fig (qN, (i; T) = Z (t j ,  T), 
(9) 

j e  (0, J] , T e  ( -~ , , ,o ) .  

On infinity 

lim Fl~(qi, tj; T)=0. (10) 
T--->_+~ 

Passing to the limits as h---) 0 and ~-->0, it is easy to reduce problem (7)-(10) to the following initial-bound- 
ary-value problem for a partial differential equation for the probability density function: 

Olq~ (q, t; T) 02H~ (q, t; T) 0 (f(q, t; T) FI~ (q, t; T)) 

Ot Oq 2 OT 
+ 

0 2 (B (q, t; T) FI~, (q, t; T)) 

aS 
( l l )  

T~ (-oo, oo) , t > O , q ~  (qo, qu) ; 
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FI~ (q, t = 0 ; T) = dp (q, T)" q ~ [qo, qN], T ~ ( -  oo, oo) ; (12) 

FI~ (q = q0, t; 7") = f2 (t, T)" t ~ [0, tmax] , T ~ ( -  o~, oo)" (13) 

H~(q=qN,  t; T) = Z (t, T) " t ~  [O, tmax], T ~  (-oo,  oo). (14) 

lim H ¢ ( q , t ; T ) = O ,  v q ~  [qo, qN], ~/t>O. (15) 
T~_+~ 

It should be noted that functions that form unambiguity conditions, must have all the properties of  a 
probability density function that have been described in Para. 1 of  the present paper, in particular, they must 
satisfy normalization conditions. 

3. Connection of the Equation for the Probability Density Function to the Equation for the Mean 
Values of the Thermal  Field. Without loss of  generality, the subsequent discussion will be performed for the 
case of  a single space variable. 

Theorem.  If  the function H~(q, t; T) satisfies Eqs. (11)-(15) and the conditions 

F l ~ ( q , t ; T ) > 0 ,  q ~  [qo, qN], t ~  ( 0 , + o o ) ,  T ~  ( - ~ , + ~ ) ;  (16) 

S FI~, (q, t = 0; T) dT = 1 , vq  ~ [q0, qNl " (i 7) 

+oo 

S H¢ (q, t; T) J q=q,,.q~ d T =  I , v t > 0 ;  (18) 

lim Tf(q, t; T) H~ (q, t; T) = O" 
T---~_+oo 

(19) 

lim T ~ T ( B ( q , t ;  T) n~(q,t;  T))=O, 
7--~_+oo 

(20) 

then H¢(q, t; T) satisfies the normalization condition 

S FI~ (q, t; T) dT = 1 , vq  ~ [qo, qN] , v t  E [0, + oo) (21) 

and is a probability density fimction, and the mean value (~(q, t)) that is determined fi'om Eq. (6) satisfies the 
initial-boundary-value problem for  the heat conduction equation 

0 (~ (q, t)) 0 ~- (~ (q, t)) 
a ~ = ( f (q ,  t, ~)) ,  t > 0 ,  q ~ [qo, qN] (22) 

~t r)q- 

with the boundary conditions of  the first kind 
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(~ (q = qo, t)) = ; Tf2 (t; T) dT,  t > O, (23) 

(~ (q = qN, t)) = ; TZ (t; T) dT,  t > O, (24) 

amt the initial condition 

(~ (q, 0)V = ; TO (t; 7) dT,  q ~ [q0, qN]- (25) 

Proof. If we integrate both sides of Eq. (19) with respect to the variable T and use conditions (19) and 
(20) at infinity, we obtain the initial-boundary-value problem for the heat conduction equation with a zero 
right-hand side tbr the integral of the probability density function. Integration of the initial and boundary con- 

q-oo 

ditions leads to ; l-l~dT-- 1 at the boundaries and at t = 0. Hence, because of the homogeneity of the equation 

4-0o 

obtained for ; H~dT based on the theorem of existence and uniqueness of the solution lor the heat conduction 

4-oo 

equation [11], it follows that inside the region the integral is ; Fl~(q, t; T)dT= l, too. 

The proof that the mean value of the thermal field obeys Eq. (22) is analogous to the proof of a similar 
theorem in [6]. Boundary conditions (23)-(25) are obtained from conditions (12)-(14) by multiplication of the 
latter by T and subsequent integration with respect to T between infinite limits. 

It should be noted that Eq. (! !) in the case of transformation of the Markovian field into a Markovian 
process, i.e., in the case of a probability density function independent of the space coordinates II~(q, t; 13 = 
Fl~(t; 13, goes over into the well-known Kolmogorov-Fokker-Plank equation [1 ]. 

Conclusion. For the obtained equation tbr the probability density function it is easy to indicate a rather 
broad spectrum of applications in areas where the stocbasticity of the flow of the described phenomenon is 
significant. Thus, tbr example, important relations can be obtained for the ignition temperature in the combus- 
tion problem of [12] and [13], in some thermal problems of nuclear power engineering [14], and when syner- 
gism methods are used in the analysis of some chemical, biological, and medical processes [ 15-18]. 

N O T A T I O N  

qi, space node; h, increment in the space coordinate, m; tj, time node; ~, increment in the time coordi- 
nate, sec; T, temperature, K; a, thermal diffusivity, m2/sec; H~(q, t; 13, probability density function; f(q, t, 13, 
source function of the thermal field (drift coefficient of the Markovian field); B(q, t, 13, diffusion coefficient 
of the Markovian field. 
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